改進的頁巖氣藏物質(zhì)平衡方程及儲量計算方法

摘 要

摘 要:頁巖氣主要以吸附狀態(tài)和游離狀態(tài)兩種形式賦存于發(fā)育大量天然微裂縫的頁巖中。為此,分別考慮裂縫系統(tǒng)和基質(zhì)系統(tǒng)的流體性質(zhì)和儲層性質(zhì),建立了考慮吸附相體積隨地層壓力變

摘 要:頁巖氣主要以吸附狀態(tài)和游離狀態(tài)兩種形式賦存于發(fā)育大量天然微裂縫的頁巖中。為此,分別考慮裂縫系統(tǒng)和基質(zhì)系統(tǒng)的流體性質(zhì)和儲層性質(zhì),建立了考慮吸附相體積隨地層壓力變化的裂縫性頁巖氣藏物質(zhì)平衡方程。實例計算結(jié)果表明:較之于改進后的物質(zhì)平衡方程,King提出的物質(zhì)平衡方程由于未考慮裂縫體系和吸附相體積,儲量計算結(jié)果偏??;Williams提出的物質(zhì)平衡方程未考慮裂縫體系,儲量計算結(jié)果偏大;劉鐵成提出的物質(zhì)平衡方程未考慮吸附相體積,裂縫系統(tǒng)儲量偏?。桓倪M的物質(zhì)平衡方程同時考慮了裂縫體系和吸附相體積兩因素,當吸附相密度增大時,頁巖氣藏吸附氣儲量就增大,而總地質(zhì)儲量略有減小,而儲層溫度、壓力、孔隙半徑與吸附相密度的關(guān)系及最終對儲量計算的影響還有待進一步研究。結(jié)論認為,考慮裂縫體系和吸附相體積對于頁巖氣藏物質(zhì)平衡方程的建立和應(yīng)用十分必要。

關(guān)鍵詞:頁巖氣  吸附相  裂縫(巖石)  基質(zhì)  系統(tǒng)  物質(zhì)平衡方程  儲量  計算

A modified material balance eq uation for shale gas reservoirs and a calculation method of shale gas reserves

AbstractShale gas is stored as gas of adsorbed and free state in shale formations with numerous developed natural microfracturesInview of this,through thc analysis of the fluid and reservoir properIies of the fracture and matrix systems respectively,a modified material halance equation was worked out for fractured shale gas reservoirs considering the adsorbed phase volume changing along with the formation pressureThe calculation results in case histories were compared with those in literatureswith neither the fracture system nor adsorbed phase volume considered,King’s equation presented smaller volumes of shale gas reserveswith the fracture system not considered,such reserves estimated by Williams’s method were larger;and with the adsorbed phase volume not considered,such reserves calculated by Liu Tiecheng¢s method were smallerHoweverthe modified material balance euuation takes both the fracture system and adsorbed-phase volume into considerationThereforeas the adsorbed-phase density rises,the adsorhed gas reserves increases in a shale gas reservoir,and the total geological reServes slightly decreasesWhereas the relationship needs to be further studied among the formation temperature,pressure,pore radius,and adsorbed phase density,as well as their impacts on the final reserve calculation resultsIn summary,it is essential to take the fracture system and the adsorbed phase volume into account when establishing and applying the material balance equation for shale gas reservoirs

Keywordsshale gas,adsorbed-phase volume and density,fracture(rock),matrixfracture system,material balance equationreserves,caleulation

頁巖氣是指在富含有機質(zhì)的細粒頁巖地層中,分別以游離狀態(tài)儲集在基質(zhì)和裂縫孔隙以及以吸附狀態(tài)吸附在有機質(zhì)、黏土顆粒及孔隙表面的天然氣資源[1-3]。吸附氣體積占頁巖氣總地質(zhì)儲量的20(Barnett頁巖)85(Lewis頁巖和Antrim頁巖),這主要取決于頁巖氣的地質(zhì)和地球化學(xué)特征[4]。由吸附氣控制產(chǎn)量的頁巖區(qū)塊通常是富有機質(zhì)、黏土頁巖,而那些主要由游離氣控制產(chǎn)量的區(qū)塊往往是富含石英的頁巖[5],并且高產(chǎn)的頁巖氣藏往往都大量發(fā)育天然裂縫[6-7]

由于頁巖氣藏特有的儲集方式和成藏條件,其儲量計算方法有別于常規(guī)油氣藏。根據(jù)頁巖氣藏的特點,在勘探開發(fā)的不同階段主要有類比法、靜態(tài)法、動態(tài)法3類儲量計算方法[8]。物質(zhì)平衡法作為動態(tài)法的一種在目前的頁巖氣藏評價中得到了廣泛應(yīng)用,考慮頁巖氣中吸附氣和游離氣的吸附與解吸特性,King[9]在有限水侵條件下建立了泥盆系頁巖氣藏的物質(zhì)平衡方程。Clarkson[10]忽略水和地層壓縮系數(shù)建立了適用于煤層氣、頁巖氣的物質(zhì)平衡方程。Ahmed[11]、Firanda[12]考慮吸附效應(yīng)、水和地層壓縮系數(shù)建立了煤層氣的物質(zhì)平衡方程,其分別可以簡化成King、Clarkson所提出頁巖氣藏物質(zhì)平衡方程。Moghadam[13]。重新定義了Z因子,提出了相似于King所推導(dǎo)的物質(zhì)平衡方程。但上述方程都假設(shè)在地層條件下吸附氣的儲集不會影響到游離氣,并且沒有考慮頁巖氣藏的裂縫系統(tǒng)。劉鐵成等[14]在考慮頁巖氣吸附與解吸特性的基礎(chǔ)上建立了考慮裂縫系統(tǒng)的頁巖氣藏物質(zhì)平衡方程。但上述這些方程在考慮頁巖氣的吸附/解吸特性時,都只考慮了解吸氣體積而未考慮吸附相自身體積隨地層壓力的變化。Williams等人[15]針對吸附性氣藏考慮了吸附層體積變化建立了物質(zhì)平衡方程,但是未考慮頁巖氣藏的裂縫系統(tǒng)。Ambrose[16]通過熱力學(xué)和SEM成像研究發(fā)現(xiàn)頁巖氣中有機質(zhì)與連通孔隙體積有關(guān),有機質(zhì)孔隙不僅存儲吸附氣,也為游離氣提供儲集空間。吸附氣與游離氣儲集空間相互影響,而不是之前認為的吸附氣與游離氣的儲集空間相互獨立,互不影響。石曉兵等[17]在考慮吸附相體積的情況下使用容積法計算得到更為準確的頁巖氣藏地質(zhì)儲量。筆者基于物質(zhì)平衡原理,考慮頁巖氣吸附相體積隨地層壓力的變化,并分別考慮基質(zhì)系統(tǒng)和裂縫系統(tǒng)的儲層、流體物性,推導(dǎo)了新的裂縫性頁巖氣藏物質(zhì)平衡方程,對原有物質(zhì)平衡方程做出了改進。

1 頁巖氣藏物質(zhì)平衡方程的建立

在建立物質(zhì)平衡方程時作如下假設(shè):頁巖氣藏為一個等溫系統(tǒng),地層溫度在整個開發(fā)過程巾一直保持不變;②同l時間氣藏內(nèi)各點壓力和采出程度相同;③忽略地層水中的溶解氣;④裂縫系統(tǒng)和巖石基質(zhì)系統(tǒng)均可壓縮,但各自壓縮系數(shù)不同;⑤裂縫系統(tǒng)和巖塊基質(zhì)系統(tǒng)束縛水飽和度不同;⑥不存在水侵和忽略地層產(chǎn)水。

在頁巖氣藏中,裂縫不僅是氣體的儲集空間,也是頁巖氣的生產(chǎn)運移通道。在頁巖氣藏開發(fā)過程中,裂縫系統(tǒng)內(nèi)的游離氣首先被采出地層。隨著地層壓力的降低和部分游離氣的采出,以吸附形式儲集在有機質(zhì)及礦物黏土表面的吸附氣從基質(zhì)內(nèi)表面解吸成為游離氣,然后隨基質(zhì)系統(tǒng)內(nèi)原始游離氣擴散到裂隙系統(tǒng)中,最后經(jīng)天然裂縫和誘導(dǎo)裂縫進入井底。目前,頁巖氣的解吸過程通常使用蘭格繆爾等溫線來表征[18],其將吸附氣量描述為在等溫條件下壓力的函數(shù):

 

在通過實驗室?guī)r心測試已知頁巖氣藏巖石的蘭格繆爾體積和蘭格繆爾壓力2個參數(shù)的情況下,在地面條件下頁巖氣藏的吸附氣體積為:

 

而在地層條件下,吸附氣是以吸附相狀態(tài)賦存的,根據(jù)r1Vlr2V2得到一定地層壓力下的吸附相體積為:

 

隨著地層壓力下降,巖石顆粒和地層束縛水發(fā)生彈性膨脹,基質(zhì)系統(tǒng)和裂縫系統(tǒng)孔隙體積分別減少,即

 

隨著地層壓力下降,吸附相氣體發(fā)生解吸,在地層條件下解吸氣體積為:

 

根據(jù)頁巖氣藏地下儲集空間體積平衡原理,基質(zhì)系統(tǒng)原始游離氣體積+裂縫系統(tǒng)原始游離氣體積+原始吸附氣吸附相體積=剩余游離氣體積+剩余吸附相體積+基質(zhì)體系巖石與束縛水膨脹體積+裂縫體系巖石與束縛水膨脹體積,其中剩余游離氣體積南剩余的原始游離氣及剩余的解吸氣組成,即

 

 

 

代入式(7)后整理得到:

 

2 模型求解

 

若不考慮吸附相體積隨地層壓力的變化,則

 

則式(8)可表達為如下形式:

FE1Gf+E2Gm                         (10)

 

(10)兩邊同時除以E1后得到:

 

利用(E2El)-(FEl)關(guān)系可作一條直線,其截距為裂縫游離氣的儲量(Gf),斜率為基質(zhì)游離氣的儲量(Gm)。分別考慮頁巖氣的基質(zhì)系統(tǒng)和裂縫系統(tǒng),則頁巖氣的總地質(zhì)儲量為基質(zhì)系統(tǒng)的游離氣儲量、裂縫系統(tǒng)的游離氣儲量及吸附氣儲量之和,可表示為:

 

3 實例計笪與分析

已知某頁巖氣藏的基本參數(shù)為:T366.48Kgg0.69,pi24.138MPaBgi0.00478,Cm4.35×104MPa-1Cw4.35×104MPa-1,Cf8.7×10-3MPa-1,j0.021,Smwi0.2,Sfwi0.05,rb2.47gcm3rs0.34gcm3,rsc0.00077gcm3VL2.76m3t,pL3.69MPa。生產(chǎn)數(shù)據(jù)如表1所示。

 

根據(jù)上述數(shù)據(jù),利用King物質(zhì)平衡方程、williams物質(zhì)平衡方程、劉鐵成物質(zhì)平衡方程及筆者提出的改進的物質(zhì)平衡方程,計算了該實例頁巖氣井的原始地質(zhì)儲量(1)。

 

由圖l可知,由于King物質(zhì)平衡方程既沒考慮吸附相體積隨地層壓力的變化,也沒考慮頁巖氣藏的裂縫系統(tǒng),計算所得儲量偏小;而Williams物質(zhì)平衡方程考慮吸附相體積隨地層壓力的變化,但沒有考慮頁巖氣藏的裂縫系統(tǒng),計算所得儲量偏大。劉鐵成提出的物質(zhì)平衡方程和筆者提出的改進后物質(zhì)平衡方程均考慮了頁巖氣藏的裂縫系統(tǒng),但由于劉鐵成物質(zhì)平衡方程沒有考慮吸附相體積,計算所得儲量略微偏小。同時劉鐵成物質(zhì)平衡方程的(E2El)-(FEl)關(guān)系曲線的斜率更大,故計算所得的基質(zhì)系統(tǒng)游離氣儲量更大(7136.7×l04m3),裂縫系統(tǒng)游離氣儲量更小(1960.6×104m3)

E2的關(guān)系式可知,吸附相密度的取值對最終預(yù)測儲量有影響。Ambrose[16]使用分子動態(tài)模擬法獲得了吸附相的密度,而不同的方法獲得的吸附相密度有一定差異。由圖2、3可知:吸附相密度增大,由改進的物質(zhì)平衡方程計算得到的吸附氣儲量隨之增加,天然氣總儲量隨之減小,但減小量相對較小。

 

 

4 結(jié)論

1)對于頁巖氣藏,其天然裂縫及微裂縫發(fā)育具備一定的儲集能力,筆者分別考慮裂縫系統(tǒng)和基質(zhì)系統(tǒng)的流體性質(zhì)和儲層性質(zhì),建立了考慮吸附相體積隨地層壓力變化的裂縫性頁巖氣藏物質(zhì)平衡方程。

2)通過實例分析表明,同時考慮吸附相體積變化及裂縫系統(tǒng)的頁巖氣藏物質(zhì)平衡方程計算的儲量較為準確。頁巖氣藏中吸附氣儲量和裂縫系統(tǒng)中的游離氣儲量均十分可觀。因此,考慮頁巖氣藏吸附相體積變化及分別考慮裂縫系統(tǒng)和基質(zhì)系統(tǒng)的流體性質(zhì)和儲層性質(zhì),對于建立頁巖氣藏的物質(zhì)平衡方程是必要的。

3)筆者探索性地研究了吸附相密度對頁巖氣地質(zhì)儲量的影響。隨吸附相密度增大,頁巖氣藏吸附氣儲量增大,而總地質(zhì)儲量略有減小。對于儲層溫度、壓力、孔隙半徑與吸附相密度的關(guān)系及最終對儲量計算的影響還有待進一步研究。

 

符號說明

Gt為頁巖氣總地質(zhì)儲量,m3;Gm為摹質(zhì)系統(tǒng)游離氣儲量,m3Gf為裂縫系統(tǒng)游離氣儲量,m3;Gasc為解吸氣地面標準體積,m3;Gas為地下吸附相體積,m3j為孔隙度,無量綱;Smwi為基質(zhì)系統(tǒng)束縛水飽和度,無量綱;Sfwi為裂縫系統(tǒng)束縛水飽和度,無量綱;Bgi為地層壓力為p時氣體體積系數(shù),無量綱;Bg為地層壓力為p時氣體體積系數(shù),無量綱;rb為巖石視密度,gcm3rs為地層條件下吸附相密度,gcm3;rsc為標準狀態(tài)下天然氣密度,gcm3;V為在一定溫度和壓力下單位質(zhì)量巖石所吸附的標準狀態(tài)氣體體積,m3t;VLLangmuir體積,在測量溫度和最大壓力下的理論最大吸附體積值,m3t;pLLangmuir壓力,理論最大吸附體積一半的氣體被吸附至表面時的壓力,MPapi為原始地層壓力,MPap為地層壓力,MPa;GP為累計產(chǎn)氣量,m3;Gh為目前天然氣地質(zhì)儲量,m3;Cw為地層水壓縮系數(shù),MPa-1Cf為裂縫壓縮系數(shù),MPa-1Cm為基質(zhì)壓縮系數(shù),MPa-1T為儲層溫度,K;gg為氣體相對密度,無量綱。

 

參考文獻

[1]BUSTIN R MBUSTIN A,ROSS D,et alShale gas oppor tunities and challenges[c]AAPG Annual Convention,20-23 April 2008,San AntonioTexas,USATulsa,OklahomaAAPG,2009

[2]FARAJ B,WILLIAMS HADDISON G,et alGas potential of selected shale formations in the Western Canadian Sedimentary Basin[J]GasTIPS l0,Winter 2004(1)21-25

[3]武景淑,于炳松,李玉喜.渝東南渝頁1井頁巖氣吸附能力及其主控因素[J].西南石油大學(xué)學(xué)報:自然科學(xué)版,2012,34(4)40-48

WU JingshuYU Bingsong,LI YuxiAdsorption capacity of shale gas and controlling factors from the well Yuye l at the southeast of Chongqing[J]Journal of Southwest Petroleum UniversityScience&Technology Edition2012,34(4)40-48

[4]WILLIAMS KOVACS J D,CLARKSON C RUsing stochastic simulation to quantify risk and uncertainty in shale gas prospecting and development[C]//paper l48867-MS presented at the Canadian Unconventional Resources Conferencel5-17 November 20ll,AlbertaCanadaNewYorkSPE,2011

[5]李延鈞,劉歡,劉家霞.頁巖氣地質(zhì)選區(qū)及資源潛力評價方法[J].西南石油大學(xué)學(xué)報:自然科學(xué)版,2011,33(2)28-34

LI YanjunLIU Huan,LIU JiaxiaThe method of shale gas geological constituency and resource potential evaluation[J]Journal of Southwest Petroleum UniversityScience&Technology Edition,2011,33(2)28-34

[6]李新景,胡素云,程克明.北美裂縫性頁巖氣勘探開發(fā)的啟示[J].石油勘探與開發(fā),2007,34(4)392-400

LI Xinjing,HU SuyunCHENG KemingSuggestions fromdevelopment of fractured shale gas in North America[J]Petroleum Exploration and Development,2007,34(4)392-400

[7]馬文辛,劉樹根,黃文明,等.鄂西渝東志留系儲層特征及非常規(guī)氣勘探前景[J].西南石油大學(xué)學(xué)報:自然科學(xué)版,2012,34(6)27-37

MA Wenxin,LIU ShugenHUANG Wenming,et alReservoir rocks characters of Silurian and its unconventional gas prospection in western Hubei and eastern Chongqing[J]Journal of Southwest Petroleum UniversityScience&.Technology Edition2012,34(6)27-37

[8]李艷麗.頁巖氣儲量計算方法探討[J].天然氣地球科學(xué),200920(3)466-469

LI YanliCalculation methods of shale gas reserves[J]Natural Gas Geoscience,2009,20(3)466-469

[9]KING G RMaterial balance techniques for coal seam and Devonian shale gas reservoirs with limited water influx[J]SPE Reservoir Engineering1993,8(1)67-72

[10]CLARKSON C R,MCGOVERM J MStudy of the potential impact of matrix free gas storage upon combed gas reserves and production using a new material balance equation[C]//Proceedings of the 2001 International Coalbed Methane SymposiumTuscaloosaAlabamaThe University of Alabama,2001133-l49

[11]J AHMED TCENTILMEN A,ROUX Bet alA generalized material balance equation for coalbed methane reservoirs[C]//paper l02638-MS presented at the SPE Annual Technical Conference and Exhibition,24-27 September 2006San Antonio,TexasUSANew YorkSPE,2011

[12]FIRANDA EThe development of material balance equations for coalbed methane reservoirs[C]//paper l45382-MS presented at the SPE Asia Pacific Oil and Gas Confcrence and Exhibition,20-22 September 2011Jakarta,IndonesiaNew YorkSPE,2011

[13]MOGHADAM S,JEJE O,MATTAR LAdvanced gas material balance in simplified format[J]Journal of Canadian Petroleum Technology,201050(1)90-98

[14]劉鐵成,唐海,劉鵬超,等.裂縫性封閉頁巖氣藏物質(zhì)平衡方程及儲量計算方法[J].天然氣勘探與開發(fā),201134(2)28-30

LIU Tiecheng,TANG HaiLIU Pengchao,et alThe calculation method of the fractu red bounded shale gas reservoir material balance equation and reserves calculation method[J]Natural Gas Exploration and Development2011,34(2)28-30

[15]WILLIAMS-KOVACS J DCLARKSON C R,NOBA K HT MImpact of material balance equation selection on rate transient analysis of shale gas[C]//paper l58041-MS presented at the SPE Annual Technical Conference and Exhibidon8-10 October 2012,San Antonio,Texas,USANew YorkSPE2012

[16]AMBROSE R J,HARTMAN R CDIAZ CAMPOS M,et alNew pore scale considerations for shale gas in place calculations[C]//paper l31772-MS presented at the SPE Unconventional Gas Conference,23-25 FebrHarv 2010,Pittsburgh,PennsylvaniaUSANew YorkSPE,2010

[17]石曉兵,楊火海,范翔宇,等.頁巖氣儲量計算的新方法[J].天然氣工業(yè),2012,32(4)60-62

SHI Xiaobing,YANG HuohaiFAN Xiangyu,et alNew methods for shale gas reserves calculation[J]Nat ural Gas Industry2012,32(4)60-62

[18]BUMB A C,MCKEE C RGas well testing in the presence of desorption for combed methane and Devonian shale[J]SPE Formation Evaluation,1985,3(1)l79-l85

 

本文作者:張烈輝  陳果  趙玉龍  劉其芬  張和成

作者單位:油氣藏地質(zhì)及開發(fā)工程國家重點實驗室·兩南石油大學(xué)

  中國石油西南油氣嗣公司勘探開發(fā)研究院

  中國石油華北油田公司第一二采油廠